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This paper proposes a multiple level set method for multi-material shape optimization in the nonlinear magnetostatic system. The 

proposed method uses the sign combination of the level set functions to identify the different material regions and their interfaces. The 

velocity for the level set equations is coupled with the velocity field from the continuum sensitivity formula involving nonlinearity of the 

magnetic materials. The multiple material interfaces are simultaneously deformed by solving the multiple level set equations. A numerical 

example is tested to show usefulness of the proposed method. 
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I. INTRODUCTION 

HE LEVEL SET METHOD has been employed for many shape 

optimization problems thanks to its versatility in dealing 

with complicated geometry change. However, since the 

conventional level set method uses a single level set function to 

divide the material region, it can deform only one kind of the 

interface in the optimization problem. Meanwhile, the magnetic 

system usually consists of more than two materials such as the 

air, iron, current, or permanent magnet. Recently, the multiple 

level set method was reported for the multi-material 

magnetostatic system for the shape optimization [1]. However, 

the multiple level set method was applied for the linear 

magnetic system. Since most of the real magnetic systems are 

designed to be operated up to the magnetic saturation for full 

use of the ferromagnetic material, nonlinearity of the magnetic 

material should be taken into account for their optimal design. 

A level set based optimization for the nonlinear 

magnetostatic system was tried in the former researches [2], but   

it was based on the discrete sensitivity analysis. Even though 

the discrete sensitivity analysis is one of good methods for 

sensitivity calculation, it has some problems and difficulties 

such as dependence on discretization model and resulting   

complexity in program implementation. On the other hand, 

since the continuum sensitivity analysis uses the closed form of 

sensitivity formula analytically derived from the variational 

governing equation, it can overcome the problems of the 

discrete approach. More importantly, it can be easily coupled 

with the level set method through the common velocity term. 

The velocity field from the continuum sensitivity formula well 

matches with the velocity field in the level set equation. 

This paper proposes the multiple level set method for the 

nonlinear magnetostatic system with multiple material 

interfaces. The multiple material regions are identified by the 

sign combination of the level set functions. The velocity fields 

on the corresponding interfaces are calculated using the 

continuum sensitivity formula involving the magnetic 

nonlinearity and the multiple interfaces are simultaneously 

deformed by solving the multiple level set equations. An 

inductor shape design problem is tested using the proposed 

method to show its usefulness. 

II. MULTIPLE LEVEL SET METHOD 

When the conventional level set method is employed for the 

shape design problems, the material regions and their interface 

are identified using the sign of the level set function ϕ. The 

conventional method expresses the shape variation by solving a 

level set equation. 
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where t is the time and V is the velocity field. However, the 

single equation cannot be used to design more than two material 

system. On the other hand, the multiple level set method can 

design the multi-material system using the multiple level set 

functions. This method requires the corresponding number of 

the level set equations. 
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The number of the equations can be minimized by using the 

sign combination of the level set functions to distinguish the 

regions. In this method, m level set functions are sufficient to 

represent upto 2m materials. Fig. 1 shows a diagram that 

illustrates how to distinguish the material regions. 

 
(a)                                    (b)                                     (c) 

Fig. 1.  Diagram of multiple level set method. (a) Single level set function ϕ1. 

(b) Single level set function ϕ2. (c) Multiple level set function ϕ1 and ϕ2. 

III. CONTINUUM SENSITIVITY FORMULA FOR NONLINEAR 

MAGNETOSTATIC SYSTEM 

In the magnetostatic system, an objective function of the 

optimization problem is defined as a regional integral of the 

magnetic potential and the field as 

T 
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where g is the differentiable function, A is the magnetic vector 

potential, B() is the curl operator, and mp is the characteristic 

function of the integration region. The continuum sensitivity 

formula for a nonlinear magnetostatic system can be derived 

using the material derivative concept of continuum mechanics 

and the adjoint variable method along, which are based on the 

Newton-Raphson algorithm for nonlinear analysis. The 

material derivative of the objective function gives 
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where gA and gB are the partial derivative of g with respect to 

the state and field variable, respectively. The adjoint variable λ 

is calculated by solving the adjoint equation shown as follows: 
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ν is the magnetic reluctivity and 2/d dB    [3]. The 

continuum sensitivity formula is obtained as a form of surface 

integral on the material interfaces as 
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where the subscripts 1 and 2  mean that the variables belong to 

the different region, the subscript t denotes the tangential 

component of the variable, J is the current density, and n is the 

unit normal vector. On the right-hand side of (7), the first, 

second, and third terms mean the sensitivity to the non-linearity, 

permeability, and current density, respectively. This formula 

enables the geometrical variation of not only the interface 

between the different permeability regions, but also the current 

surface. 

IV. NUMERICAL TEST 

Feasibility of the multiple level set method and the 

continuum sensitivity formula for a nonlinear magnetostatic 

system is shown by an inductor shape design problem. 
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Fig. 2. (a) Initial state of inductor model. (b) B-H curve of the iron. 

 

Fig. 2 shows the initial geometry of the inductor model and 

B-H curve of the iron. The zero level of level set functions ϕ1 

and ϕ2 indicate each interfaces as shown in Fig. 2. The design 

is done under two equality constraints of given constant 

volumes of the iron and the coil of a constant current density. 

The design objective is to maximize the inductance of the 

system. Since the inductance is directly proportional to the 

system energy, the system energy Wm is taken as the objective 

function; 
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The adjoint variable for the objective function is equal to the 

state equation. The velocity field Vi in the equation (2) is 

determined by the continuum sensitivity formula (7) as follows: 
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the subscripts of a, i, and c indicate that the variables belong to 

air, iron, and coil, respectively. 

 

 
Fig. 3.  Shape variation and flux distribution during optimization of inductor. 

 

 
Fig. 4.  Variation of inductance during optimization for inductor model. 

 

Fig. 3 shows the evolution of the interfaces and the flux 

density distribution during the optimization. The cross-section 

of the iron is gradually deformed into two round ones in the 

final design. The final round shape of the iron prevents the local 

magnetic saturation and allows the minimum magnetic 

reluctance of the inductor. Fig. 4 shows the evolution of the 

objective function. The inductance of the final design is 14.7% 

greater than the initial state. 
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